Inverse relationship between $\dot{\mathrm{V}}_{2_{\text {max }}}$ and economy/efficiency in world-class cyclists

ALEJANDRO LUCIA, JESÚS HOYOS, MARGARITA PÉREZ, ALFREDO SANTALLA, and JOSÉ L. CHICHARRO
Facuitad de Ciencias de la Actividad Física y el Depone, Universidad Europea de Madrid, Madrid, SPAlN; Asociación Deportiva Banesto, Madrid, SPAIN; Universidad Alfonso X El Sabio, Madrid, SPAIN; and Departamento de Enfermería, Universidad Complutense, Madrid, $S P A I N$

ABSTRACT

LUCIA, A., J. HOYOS, M. PéreZ, A. SANTALLA, and J. L. CHICHARRO. Inverse relationship between VO $_{2 \text { max }}$ and economy/ efficiency in world-class cyclists. Med. Sci Sports Exerc, Vol. 34, No. 12, pp. 2079-2084, 2002. Purpese: To determine the relationship that exists between $\mathrm{VO}_{2 \text { max }}$ and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. Metheda; Each of 11 mate cyclists ($26 \pm 1 \mathrm{yr}($ mean $\pm \mathrm{SEM}) ; \mathrm{VO}_{\text {2man }}: 72.0 \pm 1.8 \mathrm{~mL} \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$) performed: 1) a ramp test for $\mathrm{VO}_{2 m a n}$ determination and 2) a constant-load test of $20-\mathrm{min}$ duration at the power output elaciting 80% of subjects' $\mathrm{VO}_{2_{\text {max }}}$ during the previous ramp test (mean power ontput of $385 \pm 7 \mathrm{~W}$). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. Resalts: CE and GE averaged $85.2 \pm 2.3 \mathrm{~W} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~min}^{-1}$ and $24.5 \pm 0.7 \%$, respectivety. An inverse, significant correlation was found between 1) $\mathrm{VO}_{2_{\text {max }}}\left(\mathrm{mL} \cdot \mathrm{kg}^{-032} \min ^{-1}\right)$ and both $\mathrm{CE}(\mathrm{r}=-0.71 ; P=0.01)$ and GE ($-0.72 ; P=0.01$), and 2) $\mathrm{VO}_{2 \operatorname{man}}$ ($\mathrm{mL} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1}$) and both CE $(\mathrm{r}=-0.65 ; P=0.03)$ and GE $(-0.64 ; P=0.03)$. Conclusions: A high CE/GE seems to compensate for a relat:vely low VO $_{\text {2max }}$ in professional cyclists. Kcy Werds: PERFORMANCE, GROSS EFFICIENCY, POWER OUTPUT, PROFESSIONAL CYCLING, CYCLE ERGOMETRY

Previous studies have analyzed the main physiological determinants of performance in endurance sports. These include, among other variables, maximal oxygen uptake ($\mathrm{VO}_{2 \text { max }}$), lactate/ventilatory thresholds, and economy/efficiency (11). Conceming the latter, a better economy or efficiency will decrease the percentage of $\mathrm{VO}_{2 \text { max }}$ required to sustain a given mechanical work and thus might be advantageous to endurance performance. Pxevious research has indeed shown the importance of economy in endurance running performance ($5,17,21,26,30$). For instarce, the superior performance of Kenyan runners during the last decades compared with their European counterparts is attributable, at least partly, to their greater running econcomy (26). Other variables such as $\mathrm{V}_{2 \text { max }}$ do not appear to differ between Europeans and Africans. The relatively low $\mathrm{V} \mathrm{O}_{2_{\max }}$ values ($\sim 70 \mathrm{~mL} \cdot \mathrm{~kg}^{-1} \cdot \min ^{-1}$) that sometimes are found in world-class male endurance runners can be compensated for by a great running economy ($12,17,18$). Furthermore, an inverse relationship has been reported in highly trained runners between $\mathrm{VO}_{2 \text { max }}$ and running economy $(18,23)$.

[^0]To the best of our knowledge, no previous study has analyzed whether $\mathrm{VO}_{2_{\text {max }}}$ and economy/efficiency are inversely related in top-level cyclists (i.e., professional riders), as it occurs in elite runners. Although high $\mathrm{VO}_{2 \text { max }}$ values (5.0 to $5.5 \mathrm{~L} \cdot \mathrm{~min}^{-1}$ or $70-75 \mathrm{~mL}-\mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$) are usually found in world-class cyclists, $\mathrm{VO}_{2 \text { max }}$ is not the main performance determinant in this sport $(14,15)$. For instance, amateur, well-trained cyclists show similar $\mathrm{V}_{\mathrm{O}_{2 \text { max }}}$ values to those of professional riders $(14,15)$. Provided a minimum level of $\dot{\mathrm{V}}_{2_{\text {max }}}$ is reached (e.g., $>65 \mathrm{~mL} \cdot \mathrm{~kg}^{-1} \cdot \min ^{-1}$), cycling economy (CE) and gross mechanical efficiency (GE) might be especially important in top-level endurance cycling (9,14). Indeed, professional riders are considerably more economical and efficient than amateur riders despite similar $\dot{\mathrm{V}} \mathrm{O}_{2_{\text {max }}}$ values in both groups $(14,15)$.
The purpose of the study was to determine if there exists a relationship between $\dot{\mathrm{V}} \mathrm{O}_{\text {max }}$ and $\mathrm{CE} / \mathrm{GE}$ during intense, submaximal exercise in a group of world-class cyclists.

METHODS

Subjects. Eleven professional male road cyclists (age (mean \pm SEM): $26 \pm 1 \mathrm{yr}$) were selected for this investigation. Written informed consent was obtained from each participant, and the institutional Ethics Committee (Complutense University of Madrid) approved the study. A previous physical examination (including ECG and echocardiographic evaluation within the previous month) ensured that each participant was in good health. Several of the present subjects are among the best cyclists in the world, according to the ranking of the Intemational Cycling Union. To ensure that all of them could be really considered as
"world-class" riders, they were required to meet the following requirements: 1) have participated in the mean competitions of the professional category (e.g., 3 -wk tour races) and 2) have won at least one major professional race (e.g., one or more individual stages and/or final classification of a major $1-\mathrm{wk}$ or 3 -wk race (Giro d'ltalia, Tour de France, or Vuelta a España), or Top 3 in World Championships). Hemoglobin and hematocrit levels were measured in each subject before participating in the experiments. Mean values of hemoglobin and hematocrit averaged $14.7 \pm 0.3 \mathrm{~g} \cdot \mathrm{dL}^{-1}$ (range, 12.8-16.1) and $43.5 \pm 0.7 \%$ (range, 39.9-46.5) and thus were within normal, physiological limits for endurance athletes (27).

Study protocol. Each subject reported to our laboratory on two consecutive days during the months of January or February, before the start of the competition season. During the days before testing and the test days, the subjects followed a similar type of high-carbohydrate (CHO) diet ($\sim 5 \mathrm{COg} \mathrm{CHO}^{-\mathrm{j}}$). On the first day, they performed a maximal exercise test (ramp protocol) for $\mathrm{V}_{2}{ }_{2 \text { max }}$ determination, and on the second they performed a submaximal, constant-load test to measure CE and GE. Both tests were performed on the same electromagnetically braked cycle ergoneter (Ergometrics 900, Ergo-line; Barcelona, Spain). The torque measuring unit was calibrated before each testing session ($4-5$ tests per session) with a known weight of 4.0 kg . All the components of the ergometer were checked by an experienced technician before the start of the study. Before this investigation, the ergometer was equipped with a new chain. This cycle ergometer has been used in numerous studies conducted in our laboratory with professional cyclists (13-15).

During the tests, the subjects adopted the conventional (upright sitting) cycling posture. This posture was characterized by a trunk inclination of $\sim 75^{\circ}$ and by the subject placing his hands on the handebars with elbows slightly bent ($\sim 10^{\circ}$ of flexion). All the tests were performed under similar envirommental conditions ($21-24^{\circ} \mathrm{C}, 45-55 \%$ relative tumidity). Subjects were allowed to choose their preferred cadence within the range $70-90 \mathrm{rpm}$ during both type of tests. This is known to better simulate actual cycling conditions compared with tests performed at a fixed cadence. During actual racing, indeed, the preferred pedalling cadence of professional riders ranges from 70 pm (hill climbs) to 90 rpm (flat terrains or individual time trials) (13). A pedal-frequency meter was used by each subject to maintain his pedalling cadence within the aforementioned range. The subjects were cooled with a fan throughout the bouts of exercise.

Maximal exercise test. For the maximal test, a ramp protosol was followed until exhaustion. This type of protocol has been used for the $\mathrm{V}^{2}{ }_{2 \text { max }}$ determination of professionai cyclists in several previous studies (13-15). Starting at 20 W , the workload was increased by $25 \mathrm{~W} \cdot \mathrm{~min}^{-1}$. The tests were terminated when pedal cadence could not be maintained at 70 rpm (at least). Verbal encouragement was given to the subjects to continue the test until they were exhatsted. All the participants had previous experience with
this type of protocol. Heart rates (HR, in bpm) were monitored during the tests from modified 12-lead ECG tracings (EK56; Hellige; Freiburg, Germany), and gas exchange data were collected continuously using an automated breath-bybreath system (CPX; Medical Graphics; St. Paul, MN). With this system, O_{2} and CO_{2} are measured with rapid analyzers, while a disposable flowmeter, which is based on the principle of differential pressure measurement by two sensitive differential pressure transducers, analyzes ventilatory flow. This type of flowneter has been shown to be accurate (to within 2% of the target value obtained from Douglas bag collections) and reproducible for the measurement of minute ventilation during exercise (25). The mean percentage difference and the correlation coefficient between the VO_{2} measurements provided by the breath-by-breath system used in the present study and the Douglas bag method is 2.2% and 0.995 ($P=0.0001$), respectively (unpubished data provided by the manufacturer from maximal tests performed in 15 subjects of varying fitness levels). The O_{2} and CO_{2} analyzers and the flowmeter were calibrated before each single test with reference gases (Praxair, Madrid, Spain) at a concentration of 15.99% for O_{2} and 4.00% for CO_{2}, and a 3-L syringe (25), respectively. For each test, $\stackrel{\mathrm{V}}{2 \text { max }}$ was recorded as the highest VO_{2} value obtained for each 1-min interval, and the maximal power output ($\mathrm{W}_{\text {max }}$) was computed as follows (22):

$$
W_{\max }=W_{f}+[(160 \times 25)]
$$

where W_{f} is the value of the last completed workload (in W), t is the time the last uncompleted workload was maintained (in s), 60 is the duration of each completed workload (in s), and 25 is the power output difference between the last two workloads.

Constant-load test at $\mathbf{8 0 \%}$ VO $_{2 \text { max }}$. The submaximal, constant-load tests were performed over a $20-\mathrm{min}$ period at a fixed power output. For each subject, the latter was identified on the V_{2} (average for each 1 -min interval): power output curve of the previous ramp test by straight linear interpolation, as shown in Figure 1. Each $20-\mathrm{min}$ test was preceded by a $15-\mathrm{min}$ warm-up period, consisting of 5 \min at $70 \mathrm{~W}, 3 \mathrm{~min}$ at 60% of the maximal power output reached during the previous ramp test, and 2 min of gradual workload increases until the target power output was attained. Gas exchange data and HR were monitored as in the maximal tests. In addition, blood variables were determined as detailed below.
Before the start of the experimental protocol, a 21-gauge butterfly needle was inserted into the antecubital vein of each subject. The catheter was kept patent by periodic flushing with a heparinized saline solution. Blood samples were collected every 5 min during the tests. During each sampling period ($\sim 15 \mathrm{~s}$), a $1-\mathrm{mL}$ aliquot was initially withdrawn to clear the catheter, and a $1.5-\mathrm{ml}$. blood sample was subsequently collected using a heparinized syringe for the immediate estimation of PCO_{2} and pH using an automated blood gas analyzer (ABL5; Radiometer; Copenhagen, Denmark). Bicarbonate concentration $\left[\mathrm{HCO}_{3}{ }^{-}\right.$] was calculated using the pH and PCO_{2} values. Capillary blood

FIGURE 1-Txamaple of determinstion of the power outpat for the constant-load tests at $80 \% \mathbf{V O}_{2 \text { max }}$ in one sturly subject. The target outpuif was dientified by stralght linear linterpelation on this curve, which shows the relationship obtalaed in the ramp tests between VO_
 and power outpiat. In this particular case, $109 \% \mathrm{VO}_{2 \operatorname{man}}$ was 5257 mL and the ciosept power ontput eliciting $80 \% \mathrm{VO}_{2 \max }$ was 395 W. The sunallest change in power oatput that can be applied to the ergometer h $\pm 5 \mathrm{~W}$; therefore, the target power output for each sulbject was rounded off as maitiples of 5 (e.g., $350 \mathrm{~W}, 355 \mathrm{~W}, 360 \mathrm{~W}$, ete.).
sampies were taken from fingertips ($25 \mu \mathrm{~L}$) every 5 min during the tests and immediately after exercise for the deternimation of blood lactate concentration (BLa) using an electro-enzymatic analyzer (YSI 1500; Yellow Springs, OH).
Average values of CE and GE during the constant-load test were calculated. CE was expressed in (W. $\mathrm{L}^{-1} \cdot \min ^{-1}$) (7), and GE was calculated as the ratio of work accomplished $\cdot \mathrm{min}^{-1}$ (i.e., W converted to $\mathrm{kcal} \cdot \mathrm{min}^{-1}$) to energy expended•min ${ }^{-1}$ (i.e., in kcal-min ${ }^{-1}$), as described elsewhere (7). Energy expended was calculated from $\mathbf{V O}_{2}$ and respiratory exchange ratio (RER) using the tables of Lusk (16).

Statistical analysis. Pearson product-moment correlation coefficients were calculated to determine whether there was a significant relationship between $\mathrm{VO}_{2 \max }$ and both CE and GE. $\dot{V O}_{2 m a x}$ was expressed in absolute units ($L \cdot \min ^{-1}$) and in relative units $\left(\mathrm{mL} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right.$ and $\mathrm{mL} \cdot \mathrm{kg}^{-0.32}$. $\min ^{-1}$). The later was performed following the recommendation by Padilla et al. (22) to express physiological vahes relative to mass exponents of 0.32 and 1 in order to adequately evaluate level and uphill cycling ability, respectively, in clite cyclists. The level of significance was set at 0.05 . To discard any possible influence of individual variations in pedalling cadence on CE/GE, comrelation coefficients were also calculated between these variables. Results are expressed as means \pm SEM.

RESULTS

Individual characteristics of the subjects (demographic and physical characteristics, history of cycling performance in the professional category) and the results of both ramp
$\mathrm{VO}_{\text {zMAX }}$ AND ECONOMY/EFFICIENCY

FIGURE 2-Relationstip between $\mathrm{VO}_{2 \max }\left(\mathrm{mLL}^{2-} \mathrm{kg}^{-0.32} \cdot \mathrm{mil}^{-1}\right)$ and cycling economy (CE).
and constant-load tests are shown in Table 1. The mean values of pH and $\left[\mathrm{HCO}_{3}{ }^{-}\right]$obtained during the constantload tests averaged 7.38 ± 0.01 (range, $7.30-7.45$) and 19.1 $\pm 0.9 \mathrm{mM}$ (17.2-21.4), respectively.
The following significant, inverse correlations were found: VंO 2max $\left(\mathrm{mL} \mathrm{min}^{-1}\right)$ versus both $\mathrm{CE}(\mathrm{r}=-0.61 ; P$ $=0.047)$ and $\mathrm{GE}(-0.63 ; P=0.04) ; \dot{\mathrm{V}}_{2 \text { 2rax }}$
 and GE ($-0.72 ; P=0.01$) (Figs. 2 and 3); and $\mathrm{VO}_{2 \text { max }}$ $\left(\mathrm{mL} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$ versus both $\mathrm{CE}(\mathrm{r}=-0.65 ; P=0.03)$ and GE ($-0.64 ; P=0.03$) (Figs. 4 and 5). No significant correlation ($P>0.05$) was found between pedalling cadence and either CE $(\mathrm{r}=0.02)$ or $\mathrm{GE}(\mathrm{r}=0.002)$.

DISCUSSION

The main finding of our study was that, in professional worlc-class cyclists, both CE and GE are inversely correlated to $\mathrm{V}_{\mathrm{O}_{\text {max }}}$ (either expressed in absolute or relative units). It follows that a high CE/GE could compensate for a relatively low $\dot{\mathrm{VO}}_{\text {2max }}$ in these athletes. Although compa-

 grose mechanical efficiency (GE).

FIGURE 4-Relationship between $\mathbf{V O}_{2 \text { max }}\left(\mathrm{mL} \cdot \mathrm{ic⿻}^{-1} \mathrm{~mol}^{-1}\right.$) and cycllag economy (CE).
rable findings have been obtained in highly trained distance runners ($12,17,18,23$), to the best of our knowledge, no previous study has assessed the possible relationship between $\mathrm{VO}_{2 \text { max }}$ and $\mathrm{CE} / \mathrm{GE}$ in cyclists of this high fitness level. In addition, no data are available about the CE or GE of humans able to tolerate such high power outputs during prolonged endurance cycling (i.e., average of $\sim 400 \mathrm{~W}$ in our subjects and $\geq 400 \mathrm{~W}$ in four of them) before significant lactic acidosis occurs (average values of BLa were relatively low and pH was maintained within normal limits).

The values of GE obtained in the present study ($\sim 24 \%$) are similar to those recently reported in professional riders at the power outputs eliciting the lactate threshold (LT) and the respiratory compensation point (RCP) during a ramp test (14), and higher than those previously measured in not bighly trained cyclists (average of $\sim 20 \%)(19,20)$. Although GE is not an accurate measure of muscle efficiency (7), it is a good indicator of whole body efficiency and thus might be relevant from a practical point of view (3). In addition, GE measurements performed during laboratory testing have been proved to be reliable (19). Although the physiological

FIGURE 5 -Relationstip between $\mathrm{VO}_{2 \mathrm{max}}\left(\mathrm{mL}-\mathrm{k}^{-1} \mathrm{~min}^{-1}\right)$ and gross mechanical eflliency (GE).
and metabolic determinants of this variable remain to be fully understood (19), several factors can have an influence on GE, such as pedalling cadence (4), diet (24), overtraining (1), genetics (2), or fiber type distribution (7). It is unlikely that the three first factors could have significantly influenced the present results given that 1) we found no significant correlation between pedalling cadence and GE ($\mathrm{r}=$ $0.002 ; P>0.05$) and individual values of preferred pedaling cadence ranged within relatively narrowed limits (71-88 rpm; 2) the diet of the subjects was standardized as speciried in the Methods section; and 3) all the subjects were tested before the competition period, and none of them showed symptoms or signs of overtraining. At the present moment, it is not possible to determine the influence of the remaining two factors, genetics and fiber type distribution, on the GE of professional road cyclists. For instance, scarce data are available in the literature showing the results of musc' e biopsies in professional riders of the highest competition level. Nevertheless, the GE of humans is positively related to the percentage distribution of Type 1 fibers in exercising muscles. Previous research with endurance trained cyclists has shown that a higher percentage of Type I fibers in one of the main muscles involved in cycling (vastus lateralis) is associated with a greater GE during prolonged (1 h) exercise of either high ($>\mathrm{LT}$) or moderate intensity ($<$ LT) (7), and short bouts (5 min) of two-legged knee extension exercise (9). Thus, one could speculate that, in the natural selection process to succeed in world-class cyclir:g, a relatively low $\mathrm{V}_{\mathbf{2 m a x}^{\text {max }}}$ (a parameter mainly limited by the maximal capacity of the cardiac pump) could be compensated for, at least partly, by a especially high percentage distribution of efficient Type I fibers in knee ex-tenso- muscles. On the other hand, no well-controlled studies have been published to determine the specific influence of training interventions on the GE of elite endurance athletes such as the present ones. Indirect evidence from crosssecticnal stadies comparing professional and well-trained amateur riders of a lower performance level nevertheless suggests that one of main adaptations to high-volume endurance training in this sport (e.g., average of 35,000 $\mathrm{km}_{\mathrm{yr}}{ }^{-1}$ in professional riders versus $25,000 \mathrm{~km} \cdot \mathrm{yr}^{-1}$ in amateur ones) is an increase in GE (14). Such adaptation is required at the highest competition level to sustain extremely bigh power outputs ($>400 \mathrm{~W}$) during prolonged periods at the lowest possible metabolic cost. Moreover, once a certain fitness level is reached (e.g., the amateur category), submaximal variables such as GE at the LT. $\left(\sim 70 \% \mathrm{VO}_{2 \max }\right)$ or at the $\mathrm{RCP}\left(\sim 90 \% \mathrm{VO}_{2_{\max }}\right)$ are more importaut determinants of cycling performance than $\dot{\mathrm{V}} \mathrm{O}_{2 \max }$ (14).

CE averaged $\sim 85 \mathrm{~W} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~min}^{-1}$ in our subjects, although a corsiderable variability existed among subjects (range, 72-98). This mean value is clearly above those values (mean of $\sim 75 \mathrm{~W} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~min}^{-1}$) previously reported by Coyle and coworkers (6) in amateur highly trained riders of a lower competition level, during a simulated time trial of 1-h duration at power outputs ranging between 325 and 376 W .

In line with our findings, CE also showed important variations among subjects. Biomechanical/anatomical factors can have a significant influence on running economy (26). In contrast, the variations of CE and GE that occur among elite xiders of a lower fitness level than the present subjects are largely attributable to variations in the percentage distribution of Type 1 fibers in knee extensor muscles. The best rider in the present study (e.g, two-time world champion) showed a relatively low $\dot{\mathrm{V}} \mathrm{O}_{2 \max }$ value (slightly below 70 $\mathrm{mL} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$) but very high values of both CE and GE (clearly above $90 \mathrm{~W} \cdot \mathrm{~L}^{-1} \cdot \min ^{-1}$ and 25%, respectively).
The $20-\mathrm{min}$ constant-load bouts were performed at the power output eliciting 80% of the subjects' $\mathrm{VO}_{2_{\text {max }}}$ during the previous ramp tests. Average exercise intensity increased up to $\sim 86 \% \mathrm{VO}_{2 \text { max }}$ throughout the constant-load bouts because of the so-called " VO_{2} slow component"that is, the gradual increase in VO_{2} that inevitably occurs in all humans during intense, submaximal exercise, and that largely reflects an increased recruitment of inefficient Type II fibers (8). Most fibers (including both Types I and II) of the main muscles involved in pedalling are indeed recnuited at the relative intensity at which the constant-load tests were performed, as shown in previous research $(10,28)$. The most important phases of endurance cycling races (mountain ascents, time trials) are also held at high, submaximal intensities, i.e. around the RCP (14). On the other hand, both the time duration of the constant-load tests and the selected work rate (slightly below the subjects' RCP, within the so-called "isocapnic buffering phase" (29)) were well tolerated by the cyclists. For this reason, we propose that the type of constant-load exercise protocol used here could be included in the "routine" evaluation of competitive cyclists. Although thorough research has been conducted on those predictors of cycling performance that can be evaluated during more conventional gradual tests (e.g., $\mathrm{VO}_{2 \text { max }}, \mathrm{LT}$, or RCP), to date, less is known about the possible influence of GE and CE on top-level performance in this sport. Similarly, little data are available concerning the potential trainability of GE/GE in elite cyclists and the influence of genetic endowment on both variables.

In summary, both CE and GE are inversely correlated to $\dot{\mathrm{V}} \mathrm{O}_{\mathbf{2 m a x}}$ in world-class endurance cyclists. As it occurs in elite runners, a high CE/GE could compensate for a relatively low $\mathrm{VO}_{2 \text { maxx }}$. Further research is needed in this field, particularly to determine which aspects of training (e.g., technique modification, high-intensity intervals versus lowintensity training, etc.) have the greatest impact on CE/GE. We propose that constant-load exercise protocols as the one used in this study could be included in the "routine" tests that most competitive cyclists perform several times over the season. The information provided by constant-load bouts (particularly CE and GE) is of practical applicability and complementary to that obtained from the more conventional gradual tests to exhaustion (e.g., $\dot{V}_{\mathrm{O}_{\text {max }}}$, LT, or RCP).

This study was financed by Asociación Deportiva Banesto.

REFERENCES

1. Bahr, R., P. Ofstad, J. Medoo, and O. Sejersted. Strenuous pro longed exercise elevates resting metabolic rate and causes reduced mechanical efficiency. Acta PhysioL. Scand 141:555-563, 1991.
2. Buemann, B., B. Schierning, S. Toubro, et al. The association between the val/ala- 55 polymophism of the uncoupling protein 2 gene and exercise efficiency. Int. J. Ober. Relat. Metab. Disord. 25:467-471, 2001.
3. Coast, J. R. Optimal pedalling cadence. In: High-Tech Cycling, E. R. Burke (Ed.). Champaign, IL: Iuman Kinetics, 1996, pp. 1C1-117.
4. Coast, J. R., R. H. Cox, and H. G. Welcr. Optimal pedalling rate in prolonged bouts of cycle ergometry. Med. Sci. Sports Exerc. 18:225-230, 1986.
5. Conley, D. L., and G. S. Krahenbuil. Running economy and distance ruming performance of highly trained athetes. Med. Sci Sports Exerc. 12:357-360, 1980.
6. Coine, E. F., M. E. Feltner, S. A. Kautz, et al. Physiological and biomechanical factors associated with elite endurance cyching performance. Med. Sci. Sports Exerc. 23:93-107, 1991.
7. Coyle, E. F., L. S. Smossis, J. F. Horowitz, and J. D. Belitz Creling efficiency is related to the percentage of type I muscle fibers. Med. Sci. Sports Exerc. 24:782-788, 1992.
8. Giesser, G. A, and D. C. Pooce. The slow component of oxygen uptake kinetics in humans. Exerc. Sport Sci. Rev. 24:35-71, 1996
9. Horowrz, J. F., L. S. Smosss, and E. F. Covle. High efficiency of type I muscie fibres improves performance. Int. J. Sports Med. 1 $5: 152-157,1994$.
10. Ivy, J. L., M-Y. Ch, C. S. Hintz, W. M. Sherman, R. P. HellinDMLL, and O. H. Lowry. Progressive metabolic changes in individual moscle fibers with increasing work rates. Am. J. Physiol. 252(Cell PhysioL 21):C630-C639, 1987.
11. Jones, A. M., and H. Carter. The effoct of endurance training on pararneters of aerobic fitness. Sports Med. 29:373-386, 2000.
12. LONDEREE, B. R. The bse of laboratory test results with long distance runners. Sports Med. 3:201-213, 1986.
13. Lucia, A., J. Hovos, and J. L. Chicharro. Preferred pedalling cadence in professional cycling. Med. Sci. Sports Exerc. 33:13611366, 2001.
14. Llicta, A., J. Hoyos, A. Santalla, M. Perez and J. L. Chicharro. Kinetics of VO_{2} in professional cyclists. Med Sc. Sports Exerc 34:326-331, 2002.
15. Licla, A., J. Pardo, A. Durintez, J. Hoyos, and J. L. Chicharro. Physiological differences between professional and elite road myclists. Int. J. Sports Med. 19:342-348, 1998.
16. Lusk, G. The Elements of the Science of Nutrition, 4th Ed. Philadelphia: W. B. Saunders, 1928, pp. 400-446.
17. Morgan, D. W., D. R. Bransford, and D. L. Cosmi. Vatiation in the atrobic demand of running among trained and untrained subjects. Med ScL Sports Exerc. 27:404-409, 1995.
18. Morann, D. W., and J. T. Danmels. Relationship between $\mathrm{VO}_{2} \max$ and the aerobic demand of ronning in elite distance ramers. Int. J. Sports Med. 15:426-429, 1994.
19. Moselify, L., and A. E. Jeuxendrup. The reliability of cycling efficiency. Med. Sei. Sports Exerc. 33:621-627, 2001.
20. Nicrifrerry, B. L. Jr., and G. A. Brooks. No effect of cycling experience on leg cycle ergometer efficiency. Med. Sci. Sports Exerc. 28:1396-1401, 1996.
21. Noakes, T. D. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med. Sci. Sports Exerc. 20:319-330, 1988.
22. Padlla, S., I. Mumka, G. Cuesta, and J. J. Gomiena. Level ground and uphill cycling ability in professional road cycling. Med Sci. Sports Exerc. 31:878-8853, 1999.
23. Patte, R. R., C. A. Macera, S. P. Ballev, W. P. Bartoll, and K. E. Powell. Physiological, anthropometric, and training correlates of numing economy. Med. ScL. Sports Exerc. 24:1128-1133, 1995.
24. Poots, D. C., and L. C. Hensow. Effect of acute caloric restriction on work efficiency. Am. J. Clin. Nutr. 47:15-18, 1988.
25. Porszasz, J., T. J. Barstow, and K. W. Wassermar. Evaluation of a symmetrically disposed Pitot tube flowmeter for measuring gas flow during exercise. J. Appl. Physiol. 77:2659-2665, 1994.
26. Saltin, B., C. K. Kim, N. Terrados, H. Larsen, J. Svepientag, and C. Rour. Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian rumers. Scand. J. Med. Sci Sports 5:222-230, 1995.
27. Saris, W. H. M., J. M. G. Senden, and F. Brouns. What is a normal red-blood cell mass for professional cyclists? Lancet 352: 1758, 1998.
28. Shurohars, M, and T. Mortani. Increase in neuromusculat activity and oxygen uptake during beavy exercise. Amn. Physiol. Anthropol. 11:257-262, 1992.
29. Skinner, J. S., and T. H. Mclellan. The transition from aerobic to anaerobic metabolism. Res. Q. Exerc. Sport 51:234-248, 1980.
30. Weston, A. R., Z. Mbambo, and K. H. Myburgh. Ranning econonty of African and Caucasian distance nunners. Med. Sci. Sports Exerc. 32:1130-1134, 2000.

[^0]: Address for cortespondeno: Alejandro Lucis, MD, Ph.D, Departamento de Clenciss Mofológicas y Fisiologia, Universidad Exropea de Madrid, E-28670 Vilaviciasa de Odón, Madrid, Spam; E-mal: alejanidohucia@maf.cisanemes. Submitted for putblication Manch 2002.
 Acceptod for publication August 2002.
 0195-9131/02/3412-2079/\$3.0070
 MEDICINE \& SCIENCE IN SPORTS \& EXERCISE. Copyright 02002 by the American College of Sports Medicine DOI: 10.1249/01.MSS. $00000039306.92778 . \mathrm{DF}$

